
Performance Modeling Tools for Parallel Sparse 

Linear Algebra Computations

X. Sherry Li

xsli@lbl.gov

Lawrence Berkeley National Laboratory

Pietro Cicotti, Scott Baden

University of California at San Diego

ParCo 2009, 1-4 September, 2009



Motivation

 Parallel sparse matrix algorithms are needed in many large 

scale computational codes

 Why need accurate performance modeling / prediction tools?

• Large design space of parallelization strategies

• Can’t afford to implement all algorithm choices

• Performance depends on machines and input (sparsity 

pattern)

 Goals

1. Predict performance of existing implementations on 

emerging architectures

2. Design and prototype new algorithms, eliminate bad 

algorithm choices

2



Sparse matrix algorithms

 Characterization of the workload

• CPU-bound, memory-bound, or mixture

 Matrix-vector multiplication, triangular solve

• Purely memory-bound : matrix is read once, flops-to-

memory ratio is O(1)

• Can develop analytical cost models based solely on cache 

miss count s [Vuduc et al.]

 Factorizations (LU, Cholesky, QR, . . .)

• Dense is CPU-bound:  flops-to-memory ratio is O(N)

• Sparse is a mixture of CPU-bound and memory-bound: 

Factors are sparser in the beginning, and denser later

• Analytical cost models are inaccurate  [Ashcraft, Grigori et 

al.]

3



Performance modeling methods

 Synthetic benchmarks :  measure raw performance of the 

machine’s individual components

• PMTools , STREAM,  MultiMAPS,  IMB (Intel MPI 

Benchmarks) 

 Analytical cost models

 Trace-based analysis : collect application attributes / 

addresses during execution, input to cache simulator

• Can only analyze codes that are memory-bound

 Simulation-framework is more flexible and suitable for 

predicting performance

• Write simulation code to mimic application’s algorithm, 

advance simulation time by costs of memory access, 

operations, and communication

• Not to worry implementation details (e.g., sparse data 

structures)

4



Outline 

 Performance Modeling Tools (PMTools)

• Calibrate speed of machine’s individual components

 Application-specific simulations

• Validate parallel sparse LU in SuperLU_DIST

• Prototype parallel sparse Cholesky

5



PMTools

 Micro-benchmarks run off-line,  times of basic operations are 

taken over a parameter space of interest, stored in tables. The 

omitted values are estimated using interpolation, 

extrapolation,  or curve-fitting

• Memory:  timing memory updates with varying strides

• BLAS:  timing BLAS calls with typical dimensions

• interconnect:  timing point-to-point latency & bandwidth

 Cache simulator, with multiple levels

• Maintains the state of the memory hierarchy at any time for 

each processor

• Estimates the cost of each memory access

6



 Measure latency & bandwidth of memory hierarchy

• Bandwidth:  timing sequential updates

• Latency:  timing strided updates  [Saavedra]

• Repeated read/write N elements of a 1D array with 

stride s,  plot the running time as a function of (N, s).

 IBM Power5:  L1 (32 KB),  L2 (1.92 MB)

Memory micro-benchmark

7



MPI micro-benchmark

 Ping-pongs between a pair of processors, all pairs, intra-node, 

inter-node

 Bandwidth on IBM Power5:  SMP node,  8 CPUs / node

8



Putting together

9

PMTools



 SuperLU_DIST  [Li/Demmel/Grigori]

 Right-looking – relatively more WRITEs than READs

 2D block cyclic layout

 One step look-ahead to overlap comm. & comp.

10

Application simulation: sparse LU

0 2

3 4

1

5

Process mesh
2

3 4

1

5

0 2

3 4

1

5

0

2

3 4

1

5

0

2

3 4

1

5

0

210

2

3 4

1

5

0

2

3 4

1

5

0

210

3

0

3

0

3

0

0

Matrix

ACTIVE



Simulating update of the k-th block row

For all block b in UBLOCKS(k) do

p  OWNER(b)

time[p] += memory_read  (p, b)

for all colomn j in b do

if col  j not empty  then

time[p] += lookup (dtrsv, sizeof(j))

endif

endfor

Endfor

For  all processor  p  that owns a block in row k  do

time[p] += memory_update (p, stack)

endfo

11



Validation

 8 medium sized matrices from Univ. of Florida collection

 IBM Power5:  1.9 GHz,  8 CPUs/node

• Average absolute prediction error  6.1%

 Cray XT4:  2.3 GHz,  4 cores/node

• Average absolute prediction error  6.6%

12

IBM Power5 Cray XT4



Prototyping new algorithms

 Latency-reducing panel factorization

 Sparse Cholesky

13



Latency-reducing panel factorization

 Panel factorization often on the critical path

For each column within panel:

• Scale column

• Rank-1 update for rest of columns

 Two approaches

1) Broadcast row for each rank-1 update

2) Asynchronous Isend/Irecv

 Simulation shows 2) has more messages

but fewer synchronizations, more parallelism

 Implementation of 2) led to 25% speedup @ 64 procs

14

ACTIVE

4

4

4

1

1



 Use the same data layout/mapping as in SuperLU_DIST

• Block column of L,  block row of U on each processor

 Store only half of the matrix;  half operations

• No need for block row, nor upper triangular update

 Simple strategy

• Block column of L is aggregated and replicated on the 

column proccessors

 Advantage: no need to change sparse data structures 

 Disadvantages

• Larger communication volume

• Synch. of procs along each block column

New design: sparse Cholesky

15

4

1

1
4

4

4

4

4

1

1

1 4 1 4

0 2

3 4

1

5



Simulated results of sparse Cholesky

 Predicted that collective communication becomes major 

scalability bottleneck

 IBM Power5:  Cholesky vs. LU,  8 matrices

 Future design:  use truly block-oriented data format

• Minimum comm. volume;  no synch.

• Comm. pattern not restricted within processor row

16



Conclusions

 Simulation-based performance modeling is very useful

• Model complex applications that are input-dependent

• Sparse LU: prediction errors mostly within 15%, 

average under 7%

• Enable rapid prototyping of new algorithms

• Evaluate new HPC system design

• Future work

• Model resource contentions:  memory, network

17


